Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38005035

RESUMO

In this study, a sol-gel film based on lead sulfide (PbS) quantum dots incorporated into a host network was synthesized as a special nanostructured composite material with potential applications in temperature sensor systems. This work dealt with the optical, structural, and morphological properties of a representative PbS quantum dot (QD)-containing thin film belonging to the Al2O3-SiO2-P2O5 system. The film was prepared using the sol-gel method combined with the spin coating technique, starting from a precursor solution containing a suspension of PbS QDs in toluene with a narrow size distribution and coated on a glass substrate in a multilayer process, followed by annealing of each deposited layer. The size (approximately 10 nm) of the lead sulfide nanocrystallites was validated by XRD and by the quantum confinement effect based on the band gap value and by TEM results. The photoluminescence peak of 1505 nm was very close to that of the precursor PbS QD solution, which demonstrated that the synthesis route of the film preserved the optical emission characteristic of the PbS QDs. The photoluminescence of the lead sulfide QD-containing film in the near infrared domain demonstrates that this material is a promising candidate for future sensing applications in temperature monitoring.

2.
Sensors (Basel) ; 21(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540668

RESUMO

The neutrinos of cosmic radiation, due to interaction with any known medium in which the Cherenkov detector is used, produce energy radiation phenomena in the form of a Cherenkov cone, in very large frequency spectrum. These neutrinos carry with them the information about the phenomena that produced them and by detecting the electromagnetic energies generated by the Cherenkov cone, we can find information about the phenomena that formed in the universe, at a much greater distance, than possibility of actually detection with current technologies. At present, a very high number of sensors for detection electromagnetic energy is required. Thus, some sensors may detect very low energy levels, which can lead to the erroneous determination of the Cherenkov cone, thus leading to information errors. As a novelty, we propose, to use these sensors for determination of the dielectrically permittivity of any known medium in which the Cherenkov detector is used, by preliminary measurements, the subsequent simulation of the data and the reconstruction of the Cherenkov cone, leading to a significant reduction of problems and minimizing the number of sensors, implicitly the cost reductions. At the same time, we offer the possibility of reconstructing the Cherenkov cone outside the detector volume.

3.
Nanomaterials (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962165

RESUMO

This work investigates the structural, magnetic and magneto-optical properties of a new zinc phosphate-tellurite glass belonging to the 45ZnO-10Al2O3-40P2O5-5TeO2 system. The glass was prepared by a wet method of processing the starting reagents followed by suitable melting-stirring-quenching-annealing steps. Specific parameters such as density, average molecular mass, molar volume, oxygen packaging density, refractive index, molar refractivity, electronic polarizability, reflection loss, optical transmission, band gap and optical basicity have been reported together with thermal, magnetic and magneto-optical characteristics. Absorption bands appear in the blue and red visible region, while over 600 nm the glass becomes more transparent. FTIR and Raman spectra evidenced phosphate-tellurite vibration modes proving the P2O5 and TeO2 network forming role. Magnetic measurements reveal the diamagnetic character of the Te-doped glass with an additional weak ferromagnetic signal, specific to diluted ferromagnetic oxides. Positive Faraday rotation angle with monotonous decreasing value at increasing wavelength was evidenced from magneto-optical measurements. The final product is a composite material comprising of a non-crystalline vitreous phase and Te-based nanoclusters accompanied by oxygen vacancies. The metallic-like Te colloids are responsible for the dark reddish color of the glass whereas the accompanying oxygen vacancies might be responsible for the weak ferromagnetic signal persisting up to room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...